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Abstract

The aim of this paper is to investigate the use of topological derivatives in combination with the level set method for

shape reconstruction and optimization problems. We propose a new approach generalizing the standard speed method,

which is obtained by using a source term in the level set equation that depends on the topological derivative of the

objective functional. The resulting approach can be interpreted as a generalized fixed-point iteration for the optimality

system (with respect to topological and shape variations). Moreover, we apply the new approach for a simple model

problem in shape reconstruction, where the topological derivative can be computed without additional effort. Finally,

we present numerical tests related to this model problem, which demonstrate that the new method based on shape and

topological derivative successfully reconstructs obstacles in situations where the standard level set approach fails.
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1. Introduction

Topology optimization or shape reconstruction with unknown a-priori knowledge of the topological

structure of the solution is an important task in applications and a great challenge. In the context of to-
pology optimization the problem of changing topologies can sometimes be circumvented by using ho-

mogenization approaches (cf. [2,6]), which, however, suffer from several limitations. In particular

homogenization is restricted to special classes of objective functionals and has difficulties to handle complex

physical situations such as design-dependent loads (cf. [7]). An attractive alternative to solve the original
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problem without homogenization are level set methods, originally introduced by Osher and Sethian [23],

which allow to handle certain types of topological changes in an automatic way.

For several optimization problems, the level set method was successfully applied to compute optimal
geometries without a-priori knowledge of the number of connected components (cf. [8,9,11,12,17–

19,21,22,25]). In some applications to structural design it was observed that a level set approach may get

stuck at shapes with less holes than the optimal geometry (cf. [3,4]), i.e., the method encounters severe

problems to create new holes. Another example of the stopping of a level set method in a nonoptimal shape

in the context of shape reconstruction will be presented in Section 3. In all these examples, the choice of the

normal velocity for the evolving level sets was based on the shape gradient of a given functional, which can

be obtained using e.g. the speed method form classical shape optimization (cf. [29,31]).

The aim of this paper is to generalize the level set approaches for shape optimization and reconstruction
by including the topological derivative (cf. [27,28]), which is related to changes in the objective functional

corresponding to the introduction of (infinitesimally) small holes. We propose a genuine modification of the

level set approach in this case and demonstrate the success of the modified level set approach in some

numerical examples, where the standard level set approach does not yield optimal shapes.

The model problem we investigate here consists in the minimization of the least-squares functional

JðXÞ ¼ 1

2

Z
D
j u� u� j2 dx; ð1Þ

over the set KðDÞ of all compact subsets of D, where the relation between u and the shape X is given by the

elliptic partial differential equation

�Du ¼ fX; ð2Þ

subject to homogeneous Dirichlet boundary conditions on oD. Here fX denotes the characteristic function

of the shape X, i.e.,

fXðxÞ ¼
1 if x 2 X;
0 else:

�
ð3Þ

Due to the paper�s focus on the incorporation of the topological derivative into level set approaches for

shape reconstruction, we do not treat other important issues of these problems such as regularization in

presence of noise or the discretization of the state, adjoint, and level set equation.

The paper is organized as follows: First we introduce the shape and topological derivatives in Section 2,

which are the main tools used in the following. Next we give a short introduction to level set methods in

Section 3. Motivated by the interpretation of the topological derivative we suggest a modification of the

level set method that incorporates the topological derivative in Section 4. Finally, in Section 5, we present
the results of some numerical experiments for our model problem.
2. Shape and topological derivatives

In this section, we shall define two different types of perturbations of a shape variable and we shall

present concepts for sensitivity calculations of a given shape functional with respect to the considered

perturbations. The first type of perturbations is concerned with variations of the boundary of the shape
along a given speed vector field V . The derivative of a given function y ¼ yðXÞ with respect to a pertur-

bation defined by the vector field V is called the shape derivative y0ðX; V Þ of y at X in direction of V . The
shape derivative J 0ðX; V Þ of a functional J : O ! R with respect a perturbation defined by the vector field V
is sometimes called the Eulerian derivative of J at X in the direction V . Here O is an appropriate set of
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shapes. For a comprehensive introduction to this topic we refer to the monographs by Sokolowski and

Zol�esio [29] and by Delfour and Zol�esio [10].

Looking at the shape from a global viewpoint, variations of the existing shape boundaries are only one
possibility. Another obvious one consists in perturbing the global shape by changing its topology. This idea

is fundamental for the so-called topological derivative, which is based on the variation of JðXÞ with respect

to small holes at a certain position x 2 X. The respective derivative is denoted by dTJðXÞðxÞ. For an ap-

plication to topology optimization we refer to Schumacher [26] and for the calculation of topological

derivatives for elasticity problems we refer to Sokolowski and _Zochowski [27,28]. A related approach is the

topological asymptotic recently used by Guillaume et al. [13,15].

In the following we shall give a short introduction to the concepts of shape derivative and topological

derivative and we shall calculate both derivatives for our model example (2). The derivatives will be needed
in Section 4.
2.1. Shape derivatives

Assume that we are considering a class of shapes O � 2R
N
. For X 2 O and a vector field V : RN ! RN we

define perturbations Xt of X of the form

XtðV Þ ¼ fTtðx; V Þ : x 2 Xg;

where Ttð�; V Þ is the solution map (the flow) with respect to the dynamical system

x0 ¼ V ðxÞ; ð4Þ

i.e., Ttðx; V Þ is the solution to (4) at time t with initial value (at time 0) given by x.

For an operator F : O ! X (with values in some vector space X), we compute (formally) the shape

derivative of F as

F0ðXÞ½V � ¼ d

dt
FðXtðV ÞÞð Þ

����
t¼0

:

It can be shown [10] that the shape derivative depends only on V jC, where C ¼ oX. For smooth shapes, the

perturbation vector field can be decomposed into a normal and a tangential component on C. The flow with
respect to the tangential component leaves X invariant. Therefore, the shape derivative is independent of

the tangential component and we obtain

F0ðXÞ½V � ¼ F0ðXÞ½vn�;

where v ¼ V � n with n denoting the exterior unit normal vector field on C. Hence, it is sufficient to consider

only normal perturbation fields which are defined by the corresponding scalar function v.
For shape optimization problems, we are interested in finding a direction of perturbation v for which the

value of the given shape functional JðXÞ decreases most rapidly. If the action of the shape derivative in

direction of a perturbation v is written as a linear form hg; viB0;B where B is an appropriate Banach space of

function on C and B0 is its dual, then the direction of steepest descent with respect to the shape functional J
is given by v ¼ �jðgÞ, where j : B0 ! B denotes the duality mapping. By extending shape derivatives to less

smooth shapes and variations (which is possible for many examples), the velocity method can be used in

combination with level set methods, to define level set evolutions with decreasing objective function values.

It can be proved that the shape derivative of the objective function (1) under the constraints (2) and (3) is
given by
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J 0ðXÞ½V � ¼
Z
D
ðuðXÞ � u�Þu0ðXÞ½V �dx;

where the shape derivative u0 is characterized in the following theorem (cf. [16]).

Theorem 2.1. Let X � D be a domain with boundary oX in the class C1, and let V 2 C1ðRN ;RN Þ be the ve-

locity field that determines the evolution of X. Then the map uðXÞ : O ! H 1
0 ðDÞ maps X onto the solution uðXÞ

of (2), has a shape derivative u0 2 H 1
0 ðDÞ that is given as the solution to

� Du0 ¼ 0 in X [ ðD� XÞ;

s
ou0

on
t ¼ V � n on oX:

ð5Þ

Here sht denotes the jump of a function h across the interface oX.

Defining w 2 H 1
0 ðXÞ as the unique solution of the adjoint problemZ

D
rw � rhdx ¼

Z
D
ðuðXÞ � u�Þhdx 8h 2 H 1

0 ðDÞ; ð6Þ

we can write the shape derivative of JðXÞ in the standard form:

J 0ðXÞ½V � ¼
Z
oX

wV � nds: ð7Þ
2.2. Topological derivatives

While the shape derivative is based on local perturbations of the boundary of the domain X (continuous

perturbations with respect to the Hausdorff distance), the topological derivative measures the influence of
small holes (topology changes) in X. Such perturbations are continuous in the L1-distance of sets. Again we

consider a map F : O ! X where X may equal R or a suitable Banach space. Then the topological de-

rivative is defined via

dTFðXÞðxÞ :¼ lim
q!0

FðXq;xÞ �FðXÞ
jBq;x \ Xj 8x 2 X; ð8Þ
where Bq;x ¼ fy 2 Rd j jy � xj < qg, Xq;x ¼ X� Bq;x and jAj denotes the Lebesgue measure of the set A.
If F is some objective function to be minimized, the topological derivative provides information where

to place holes such that the objective function is reduced. This complements the information of the shape

derivative which tells how to evolve the existing shape, but not how to introduce new shapes, to achieve a
reduction of the objective function.

Originally the topological derivative was intended to subtract material at x 2 X, but in some applica-

tions, especially in our application, it makes also sense to add material at x 2 D� X. In this case the ‘‘set-

minus’’ must be replaced by ‘‘union’’ in (8). For the sake of simplicity, we treat only one of the possible two

case (the ‘‘set-minus’’ case) thoroughly and deal with the other case by analogy.

In the following we calculate the topological derivative for the objective JðXÞ defined in (1). During the

derivation we will often need the expressions uðXÞ; uðXq;xÞ, which we denoted in the following by u; uq;x. We

start with a proposition on the expansion of the state u with respect to a perturbation of radius q:



348 M. Burger et al. / Journal of Computational Physics 194 (2004) 344–362
Proposition 2.2. Let X � D be some measurable domain with positive measure and uq;x; u be the corresponding

solutions to the Dirichlet problem for (2), then there exists a constant C > 0 such that

kuq;x � ukH1ðDÞ 6CjBq;x \ Xj
1
q; ð9Þ

where q 2� 2d
dþ2

;1�

Proof. The difference between the solutions satisfies

�Dðuq;x � uÞ ¼ fXq;x � fX;

and hence, by a standard stability estimate we obtain that

kuq;x � ukH1ðDÞ 6C0kfXq;x � fXkH�1ðDÞ

for some constant C0. The assertion follows now from the continuous embedding of H�1ðDÞ into LqðDÞ [1]
and the fact that

kfXq;x � fXkLqðDÞ ¼
Z
Bq;x\X

1dx

 !1
q

:

Note that with additional regularity results for (2) even stronger results than in Proposition 2.2 could be

obtained for smooth data. �

Theorem 2.3. Let X � D be some measurable domain with positive measure, JðXÞ be the objective function

defined in (1) and w be the solution to the adjoint problem (6). Then the topological derivative dTJðXÞðxÞ is
given by

dTJðXÞðxÞ ¼ �wðxÞ x 2 X
wðxÞ x 2 D� X

�
a:e: ð10Þ
Proof. We only proof the assertion in the case x 2 X, that is, we subtract a material. The second case

x 2 D� X can be treated analogously. Note that the case where we add or subtract material locally in a

neighborhood of a point x 2 oX corresponds to a local perturbation of the boundary and is treated within

the concept of shape derivative in Section 2.1.

• To calculate the limit in (8) we have to consider the difference

JðXq;xÞ � JðXÞ ¼ 1

2

Z
D
ðuq;x � uÞ2 dx�

Z
D
ðuq;x � uÞðu� u�Þdx:

• We can estimate the first term by

kuq;x � uk2L2ðDÞ 6OðjBq;x \ Xj
2
qÞ;

where we choose q < 2 which is possible due to Proposition 2.2. Hence the limit q ! 0 of this term divided

by jBq;x \ Xj tends to zero.

• The second term can be rewritten, using the definition of the adjoint problem (6), asZ
D
ðuq;x � uÞðu� u�Þdx ¼

Z
D
rðuq;x � uÞ � rwdx ¼

Z
D
ðfXq;x � fXÞwdx ¼ �

Z
Bq;x\X

wdx:
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• With the Lebesgue-differentiation-theorem [14] the limit of the second term divided by jBq;x \ Xj is al-
most everywhere given by

lim
q!0

1

jBq;x \ Xj

Z
Bq;x\X

wdx ¼ wðxÞ;

which completes the proof. �

A closer look at the proof of Theorem 2.3 shows that along the same lines more complicated objective

functions and even more complicated problems like inclusion detection problems can be treated as soon as

one has an estimate like in Proposition 2.2.

One observes that the topological derivative can be computed without any additional effort if we have

already computed the shape derivative in this example. This statement is not true in general, but one can

still use the adjoint method to compute the topological derivative with similar effort as the shape derivative.

For the computation of topological derivatives for other interesting problems like inclusion detection and

structural shape optimization we refer to Sokolowski and _Zochowski [27,28].
3. Connecting level set and speed methods

We already mentioned in Section 2.1 that the shape derivative provides information of how to evolve a

given shape such that the objective function (1) decreases during the evolution. The problem is now to

represent and evolve a shape in a suitable way. One of the possible techniques is the level set method.

The key feature of the level set approach is to represent domains and their boundaries not via param-
eterizations, but as level sets of a continuous function /, the so-called level set function.

For the computation of an evolving open set XðtÞ, t 2 Rþ, one can assume that the level set function / on

RN � Rþ is time-dependent. Assuming this, the evolution of Xt is alternatively determined by the evolution

of the level set function, where the connection between evolving shape and evolving level set function is

established via

XðtÞ ¼ f/ð�; tÞ < 0g:

The boundary CðtÞ of XðtÞ (if /ð�; tÞ vanishes only on a set of Lebesgue measure zero) is then given by the

zero-level set, i.e.,

CðtÞ ¼ f/ð�; tÞ ¼ 0g:

Suppose that the evolution of the shape is determined by a flow xðtÞ ¼ Ttðx; V Þ such that

dx
dt

ðtÞ ¼ V ðxðtÞÞ;

as described in Section 2.1. Then the corresponding evolution of the level set function / is determined by

the first-order transport equation

o/
ot

þ V � r/ ¼ 0; in RN � Rþ: ð11Þ

In the particular case of a velocity in normal direction

V ¼ vn on C� Rþ; ð12Þ
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we can use the relation n ¼ r/
jr/j to compute the evolution of the level set function from the nonlinear level

set equation of Hamilton–Jacobi type

o/
ot

þ v j r/ j¼ 0; in RN � Rþ: ð13Þ

Note that for the formulation (13) the function v needs to be given on RN or at least on some neighborhood

of C in RN . If v is a priori only on C, it has to be extended to RN � C. In general, evolutions with the same

normal component of the velocity coincide (tangential components correspond to re-parametrizations

only), so that we will restrict our attention to the case (12).
For a detailed exposition of level set methods for the propagation of interfaces we refer to the mono-

graph by Osher and Fedkiw [24].

In principle, the level set method is capable to perform topology changes in the propagating shape.

Especially merging components and breaking up of one component into two are typical topology changes

which can be treated using the level set method. However, since the level set method is designed to describe

the propagation of interfaces with a given speed function defined on the interface, it is usually not possible

to create holes within existing shapes away from the boundary or to introduce new components of the

shape at locations far from the boundary. For shape optimization problems this might cause the level set
propagation to stop in local minima where local movement of the boundary cannot produce a decent of the

cost function value but change of the topology (e.g. introduction of holes) might give further reduction of

the cost function value. There are several situations where the disability of the level set method to create

holes can in fact be observed. For example, in a one dimensional situation one can easily show that a simply

connected domain will remain simply connected during the evolution. The propagation of zero-dimensional

interfaces (isolated points) by one-dimensional level set functions might be a useful way to describe crack

propagation, since a planar crack can be represented by a one-dimensional level set function defined on

curve which again can be given as the zero level set of a two-dimensional level set function (cf. [30]). In the
context of shape optimization, Allaire et al. [4] observed problems in creating holes in spatial dimension two

and three. In any of these cases, a further decrease of the objective functional can be obtained by the

nucleation of small holes, i.e., by perturbations of the shape in the L1-topology. In order to realize this idea

in a computational way, we propose a modification incorporating the topological derivative in the fol-

lowing section.
4. Level set methods with topological derivatives

Due to the limited capability of the shape derivative based level set method to generate holes, it seems

necessary to consider a modification, including a term dependent on the topological derivative. An obvious

modification is to add a forcing term, in order to cause negative values of the level set function to increase if

it is favourable to add a hole at this position and to decrease if not (vice versa for positive values). In

accordance with the considerations in Section 3 this strategy results in a first-order Hamilton–Jacobi

equation for the level set function, of the form (13)

o/
ot

þ F jr/j þ xG ¼ 0; ð14Þ

with x being a positive real parameter controlling the influence of the additional source term G. The speed
F will be chosen as a descent direction for the propagation of the zero level set of /.

It remains to choose the functions F and G in dependence of state, adjoint state and of the shape given by

the zero level set of /. It seems reasonable to choose F in dependence of the shape derivative, since this term
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determines the geometric motion, and G in dependence of the topological derivative, since the forcing term

determines the nucleation of new holes. In the following we shall use the notation gðx; tÞ :¼ dTJðXðtÞÞðxÞ.
We base the choice of the source term G on the following reasoning:

• If /ðx; tÞ < 0 and gðx; tÞ < 0, then it is favorable to create a hole at x and thus, the value of / should

increase. Vice versa, if /ðx; tÞ > 0 and gðx; tÞ < 0, then the value of / should decrease, since it is favorable

to add material.

• If /ðx; tÞ < 0 and gðx; tÞ > 0, then it is not favorable to create a hole and thus, the value of / should not

increase. Vice versa, if /ðx; tÞ > 0 and gðx; tÞ > 0, then the value of / should not decrease.

The movement of the level set function towards zero if topology change appears favorable might not

immediately (within one time-step) generate a topology change but it enables an eventual topology change

away from the zero level set if the tendency towards changing the topology persists during several time-
steps in the evolution of the level set function.

If we ignore the influence of the first-order term (which rather causes a horizontal than a vertical

movement of the values of /) for the moment, then the change in / is determined by

o/
ot

ðx; tÞ ¼ �Gðx; tÞ: ð15Þ

Hence, from the above arguments we need that G satisfies

Gðx; tÞ > 0 if /ðx; tÞgðx; tÞ > 0;
Gðx; tÞ < 0 if /ðx; tÞgðx; tÞ < 0:

�
ð16Þ

It seems natural to choose G in linear dependence on g, such that the topological derivative has higher
influence where it is more favorable to add holes. A linear dependence of G on the level set function /
would be unnatural and might lead to unreasonable results, since then the increase of the level set function

is slowed down when its values is close to zero. Therefore, we shall use the simple choice

Gðx; tÞ ¼ �sgn/ðx; tÞgðx; tÞ; ð17Þ

which obviously meets the above requirements. For the model problem (1) and (2), this choice is partic-

ularly simple, since due to (10), we obtain that G ¼ �w. Hence, the modified level set evolution is given by

the first-order Hamilton–Jacobi equation

o/
ot

� wðj r/ j þxÞ ¼ 0: ð18Þ

We can give yet another, variational interpretation for the choice of the term G. We will present the ar-

guments for the model problem (2), but the transfer to a more general situation is straight-forward.

Suppose that we are given the optimal shape Xo with respect to the cost functional (1). If x 2 Xo, that is

/ðxÞ < 0, changing the local properties from material to void, i.e., placing a hole at x must increase the

value of the cost functional. Therefore dTðXoÞðxÞ ¼ �wðxÞP 0. Hence, /ðxÞwðxÞP 0. On the other hand, if
x 2 D� Xo, we have /ðxÞ > 0. Adding material at x cannot decrease the cost function value and we obtain

dTðXoÞðxÞ ¼ wðxÞP 0, from which we conclude again that /ðxÞwðxÞP 0. Obviously, if x 2 oXo then

/ðxÞ ¼ 0 and also /ðxÞwðxÞP 0. In other words, for the optimal shape the product /w is nonnegative.

Adding a term

Kð/Þ ¼ �x
Z
D
/wdx ð19Þ

to the cost functional (1) will enforce the matching of the signs of / and w on D as the minimization

proceeds. The derivative of K with respect to the shape encoded in / is given by oK
o/ ¼ �xw which leads to
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the gradient flow (18) for the functional ĴðX;/Þ ¼ JðXÞ þ Kð/Þ. Note that Ĵ does not have a minimizer

since Ĵ is not bounded from below in the variable /. This means also that the gradient flow (18) does not

converge to a steady state for the level set function /. This, however, is not a problem since we are in-
terested only in the shape variable C ¼ oX, i.e. the zero level set of / which in fact becomes stationary at the

solution to (1) even though the values of /ð�; tÞ may still change (but not their sign). Let us consider the

influence of the new forcing term in more detail. Suppose we are given a point x 2 D� C at which the signs

of / and w do not match. Then the term �xw will drive / towards zero, eventually leading to a change in

the geometry of X. If, however, the signs of / and w already agree, the movement induced by �xw will push

/ even further away from zero thus leaving X unchanged.
5. Numerical experiments

In the following we present the results of some numerical experiments, which demonstrate the im-

provement that can be achieved by using the topological derivative in additional to the shape derivative. We

performed two tests for the model problem (2), the first in one spatial dimension, where the original level set

method can never split, and a second in two spatial dimensions, with an obstacle including a hole. All

algorithms have been implemented in the software system MATLAB.

5.1. A one-dimensional example

We start with a simple one-dimensional example related to model problem (2). The exact solution in this

case consists of two connected components, while the initial value for the level set method consists of a

single connected component only. The indicator functions of the exact solution (left) and the initial shape

(right) are show in Fig. 1.

Both the level set equation and the elliptic state equation are discretized on a uniform grid with 128

points. We use a standard finite difference scheme for the elliptic equation and a simple first-order
monotone scheme for the level set equation (cf. [24] for details). The time step s is chosen according to the

CFL-condition, i.e., at time tj
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Fig. 1. Exact solution (left) and initial value (right) in Example 1.



Fig. 2. Evolution of the level set function at time steps 100, 150, 200, 250, 300, and 350.
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Fig. 3. Evolution of the indicator function at time steps 100, 150, 200, 250, 300, and 350.
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s ¼ 0:9
h

maxx F ðx; tjÞ
; ð20Þ

where h ¼ 1=127 is the fineness of the spatial discretization. This choice ensures the stability of the explicit

discretization method for the level set equation (cf. [24]). As a starting value for the level set function we

used the signed distance function of the initial shape shown in Fig. 1.
For x ¼ 1, the evolution of the level set function and the corresponding indicator function for the zero

level set are illustrated in Figs. 2 and 3 by plots after time steps 100; 150; . . . ; 350. One observes that at the

initial stage of the evolution, the geometric motion forced by the shape derivative is dominating and the

shape evolves toward the convex envelope of the two obstacles in the exact solution. We want to mention at

this point that this effect is not particular for the (narrow) initial value we used, it also occurred for different

initial values. For example, for an initial value including the convex envelope of the two obstacles, the

motion was decreasing the size at the initial stage. With decreasing normal speed in the geometric motion,

the topological derivative becomes more and more important and changes the shape of the level set
function. As one would expect in this example, the largest value for the topological derivative is attained

where the exact solution actually has a hole. Note that the signed distance function of the initial value takes

its minimal value in the hole in the exact solution. Therefore it is particularly difficult in this case to generate

a hole at the right location. Nonetheless, the proposed level set evolution succeeds to generate the hole.

In Fig. 4, plots of the residual and of the L1-difference in the indicator functions of the evolving shape

and the exact solution are plotted versus the number of time steps, both for the original level set approach

based on the speed method and for the modification incorporating the topological derivative. One observes

that the original approach stagnates and is not able to compute the exact solution as expected, while the
modified method decreases both the residual and the L1-error to zero.

The results for different choices of the parameter x are shown in Fig. 5. One observes that the decrease in

the error and objective is faster for higher values of x, which is to be expected, since the nucleation occurs

earlier. Nonetheless, the decrease is slower in a subsequent phase for a very large value (x ¼ 10), mainly

due to the nucleation of other holes, which then have to be removed by the geometric motion. One observes

that the number of time steps needed for x ¼ 1 and x ¼ 10 in order to decrease the error to the limiting

value at this discretization is quite the same, while the evolution is slower for x ¼ 0:1.
Fig. 4. Residual (left) and error in the L1-norm (right) vs. number of time steps, for the original level set method using the shape

derivative only (dash-dotted) and with the additional topological derivative (solid).



Fig. 5. Residual (left) and error in the L1-norm (right) vs. number of time steps, with different weighting parameters x ¼ 1 (dash-

dotted), x ¼ 0:1 (solid), and x ¼ 10 (dotted).
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One also observes that more than a single hole are generated during the evolution (see time steps 200,

250 to 300), but finally one obtains the correct number of holes. In addition, the objective functional is not

strictly decreasing during the evolution, but shows some small increases, which are compensated by larger

decreases in the following time steps. Such fluctuations in the number of holes and in the objective func-
tional can be caused by several reasons:

• If the parameter x is too small, the level set function tends to become rather flat around zero. Therefore,

small oscillations will cause new holes, which is obviously undesirable.

• If the parameter x is too large, than the level set function becomes very steep (almost discontinuous)

around a new hole and thus it is difficult to control numerical oscillations in the level set except with

higher artificial diffusion (e.g. in a Lax–Friedrichs scheme). Moreover, the topological derivative has a

very strong effect also while the geometric motion is still significant and therefore it is not clear if the

energy is monotonously increasing.
• An increase in the objective functional also happens for level set methods without topological derivatives

if the time step is chosen proportional to the CFL-bound (cf. [5,9]), which is mainly due to the fact that

this time is too large to achieve a decrease in the objective functional. A step-size control could help to

overcome this difficulty, but it might also slow down the algorithm by limiting the time step too severely.

Numerical experience shows that usually an increase in the objective is followed by a stronger decrease,

which allows to obtain convergence within few time steps.

In order to overcome the problems noted above, we also investigated a modification of our approach,

with a constant xk dependent on the time step. We choose
xk ¼
1 if JðXk�1Þ � JðXk�2Þ > ��;
0 else;

�
ð21Þ
i.e., we incorporate the topological derivative only if there is not sufficient descent in the objective. For the

numerical simulation we chose � ¼ 10�4. A second modification we considered, was to switch also the term
based on the shape derivative, i.e., the evolution in time step k is given



Fig. 6. Residual (left) and error in the L1-norm (right) vs. number of time steps, using the mixed evolution (dash-dotted), switching in

the topological derivative (solid), and switching in both derivatives (dotted).
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o/
ot

¼ �Gð/Þ if JðXk�1Þ � JðXk�2Þ > ��;
�F jr/ j else:

�
ð22Þ

The result of these modifications is a clear distinction of the geometric motion and of nucleation. In this
way less nucleation events happen.

A quantitative comparison of the modifications (21) (denoted �Switched Topological Derivative�) and
(22) (denoted �Switched Topological and Shape Derivative�) to (14) (now for x ¼ 1) is shown in Fig. 6,

where again the residual and the L1-error are plotted vs. the number of time steps. One observes that the

modifications improve the convergence speed with respect to (14), while there is little difference between

(21) and (22). Since, in addition, the modifications yield an evolution with less nucleation events, it seems
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Fig. 7. Residual (left) and error in the L1-norm (right) vs. number of time steps, using the level set evolution only.



Fig. 8. Evolution of the shape at time steps 10, 40, 70, 80, 85, and 90.
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Fig. 9. Evolution of the level set function at time steps 10, 40, 70, 80, 85, and 90.

M. Burger et al. / Journal of Computational Physics 194 (2004) 344–362 359
favorable to use one of the modifications for the numerical solution, as we will also do in our two-di-

mensional example in Section 5.2.

A final inspection of the results shows that probably the evolution of the level set function, but not the

final result will depend on the choice of the initial value. If the initial value for / was chosen to be flat e.g. in

the level set f/6 0:1g, then the first nucleation would obviously appear where the magnitude of the to-

pological derivative has largest magnitude and the subsequent level set evolution might yield convergence to

the exact solution without creation of further holes. In our case, with the signed distance function being the
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initial value, another hole might nucleate first due to a larger initial value of the level set function. Note

however, that the level set evolution we propose converges also in this difficult situation, which indicates

that the final result is independent of the initial value.

5.2. A two-dimensional example

The two-dimensional example for (2) we consider is the reconstruction of an obstacle being a ball of

radius 0.5 which includes a hole of radius 0.2, both centered at the origin. The computational domain is the

unit square. We discretize the state and adjoint equation using piecewise linear finite elements (within the

MATLAB PDE Toolbox) and the level set equation by finite differences on a square grid of 64� 64 points.

For the numerical solution of the level set equation we use a weighted ENO-scheme (cf. [20]) of fifth order
in space and third order in time, with a Godunov-type flux. The time step is chosen as in the one-di-

mensional example.

The initial value in our computation is a ball of radius 0.4 centered at the point x ¼ �0:2, y ¼ 0:3. The
corresponding initial value for the level set function is the signed distance function to this ball. Due to the

numerical experience in the one-dimensional example, we used the modification (21) to avoid a too large

number of nucleation events during the level set evolution, again with � ¼ 10�4.

We start with a numerical experiment using the shape derivative only, which leads to a convergence of

the shape to the outer contour of the exact solution. Note that in principle, this evolution could split up and
create a hole, but it seems that the method is stopped in a stationary point with respect to normal variations

of the shape. The nonconvergence of this approach is illustrated in Fig. 7, which shows a plot of the residual

and the L1-error versus the number of time steps, both clearly stagnating after few steps.

The evolution of the shape and the level set function are illustrated in Figs. 8 and 9 at different time steps.

At the initial stage, which is a pure geometric motion (x ¼ 0), the shape converges to the outer contour of

the obstacle until this motion stagnates. With the stagnation of the geometric motion, the topological

derivative is activated (x ¼ 1), which leads to a nucleation event after around 75 time steps. Since this leads

to a significant decrease in the objective, the topological derivative is deactivated again (x ¼ 0), and the
inner contour converges via pure geometric motion to the exact shape. Finally, this geometric motion

stagnates again, which means that the topological derivative would have to be activated, but since no

further nucleation is favorable at this point, the sign of the topological derivative is such that no new holes
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Fig. 10. Residual (left) and error in the L1-norm (right) vs. number of time steps.
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can be created and therefore the evolution has to be stopped. From the evolution of the level set function

one observes that the topological derivative has almost no effect except around the origin, where a new hole

is created.
Finally, we show the evolution of the residual and the L1-error in time in Fig. 10. The residual stagnates

rather early and the topological derivative is activated after around 45 time steps, leading to a nucleation at

time step 75. Surprisingly, the objective is decreasing already before the nucleation event occurs. This might

be due to the fact that the level set function changes locally around the exterior contour. Note that the error

is decreasing slower than the objective at this stage. Another unexpected effect is an increase in the objective

right after nucleation. This is probably due to the fact that a rather large object nucleates in this case (the

level set function is very flat in a rather larger region around the origin), and hence the asymptotic in the

topological derivative is not valid. Nonetheless, this increase in the objective yields a stronger increase
almost to zero in subsequent time steps and a strong decrease of the error. One also observes that the

objective functional and the error oscillate and increase after a minimum is reached after around 82 time

steps. This is a typical effect for ill-posed problems in presence of noise and indicates that the iteration

should be stopped at this stage. We want to mention that the noise in our numerical examples arises from

numerical errors only, for a further investigation of the effects of data noise we refer to future work.
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